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Abstract

Current research on space telerobots has largely focussed on two problem areas: executing remotely controlled
actions (the "tele" part of telerobotics) or planning to execute them (the "robot" part). This work (see [Rodriguez,
ed. 87]) has largely ignored one of the key aspects of telerobots: the interaction between the machine and its
operator. For this interaction to be felicitous, the machine must successfully understand what the operator is trying
to accomplish with particular remote-controlled actions. Only with the understanding of the operator's purpose for
performing these actions can the robot intelligently assist the operator, perhaps by warning of possible errors or
taking over part of the task. We motivate the need for such an understanding in the telerobotics domain and describe
an intelligent interface we are developing in the chemical process design domain that addresses the same issues.

1 Telerobotic Interfaces

Space telerobots are being developed to increase astronaut's productivity by allowing them to remotely perform cost-
effective assembly, servicing and maintenance of equipment in outer space [Bejczy 87, Jenkins 87]. The telerobot
extends the operator's abilities into the hostile environment of outer space while the operator stays in a non-hostile
location. While the long-term goal is for autonomous telerobots that can perform their duties with little human
intervention, current research is directed towards an active role of the human operator in the guidance of the telerobot.
The operator monitors closely the activity of the robot through video and sensor information and issues instructions
directly, through manipulator controls, and indirectly through prestored task plan data.

One problem with such a paradigm is the complexity of the required telerobotic interface. The operator must contend
with limited resources and environmental issues such as imprecise video or sensor data, communication time delays,
and the parallel coordination of numerous telerobot resources (e.g., the control of a mechanical arm and its numerous
degrees of freedom [Bejczy 87]). An interface that can smoothly handle such issues in real time is beyond current
technology. An operator instead must break the task down into reasonable self-contained pieces and separately
execute actions to achieve each piece. For example, consider a telerobot having two arms with cameras mounted on
each hand. Now suppose the operator is manipulating one ann to perform a task but would also like to move the
second ann so that its camera can provide a view of the first arm from the side. An operator might find it quite
awkward to manipulate both arms and cameras at the same time. If, however, the telerobot system could recognize
the operator's goals and, seeing that the second arm was idle, infer that a view from it would be helpful to the
operator, it could automatically move the second arm to track the fast arm until the operator attempted to manually
control it.

We propose that an intelligent telerobotics interface could address such problems and provide the operator with a
more robust and habitable environment for controlling the robot. Development of such an interface requires adding
another layer to the interface control mechanism that attempts to surmise the purpose of the operator's actions and,
from those inferences, determine (1) more precise specifications for free-tuning an operator's action and (2) helpful
actions that the telerobotic system can independently perform to assist the operator and the telerobot in the

performance of the task. Such an interface requires a mechanism, which we call a "plan recognizer," to infer the
operator's intentions, and a response planner, to determine from the operator's intentions, the operator's actual
actions, the telerobotic system's knowledge base, and sensor data appropriate ways of responding (e.g., adjusting an

1partial support for this research was provided by the National Science Foundation under grant IRI-8701874.
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operator's commands, by tilling in more detailed information, or performing on its own initiative non-catastrophic
actions). Figure 1 below illustrates the interface we envision. Notice that the plan recognizer has been added to the
typical telerobot interface between the operator and the response planner where it can deduce an operat_'s goals and
fine-tune an operator's commands. In this paper we concentrate only on plan recognition; others (e.g., [Dean and
Brody 87], [Drummond, Currie, and Tate 87], [Durfee and Lesser 87], [Georgeff, Lansky, and Schoppers 87], and
[Wilkins 87]) are considering response planning. Below we describe plan recognition and some of its recent
instantiations and then we lay out a more robust formulation, constructive plan recognition, that we are attempting
to employ. We describe as a case study how plan recognition has improved a chemical process design interface that
we have built. Finally, we close with a brief discussion on how a similar interface could benefit telerobotics.
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Figure 1: A proposed telerobot interface
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Figure 2: Standard plan recognition

2 Plan Recognition

2.1 Standard Plan Recognition

In the artificial intelligence literature, the issues mentioned in the previous section are addressed by work onplan
recognition (e.g., [Allen 83], [Carberry 85], [Carver, Lesser, and McCue 84], [Genesereth 79], [Kautz 87], [Litman
and Allen 87], [Pollack 86], [Schank and Reiger 74], [Schmidt, Sridharan, and Goodson 78], [Sidner 85]). Plan
recognition is the process of inferring a user's intentions from his or her uttel"ances or commands. In other words,
since people don't normally maneuver in the world haphazardly and they usually have a purpose in mind, one wants

to recognize the plan that underfies their actions A plan recognition component attempts to understand a sequence of
observed input actions as accomplishing some high-level goal. Although these techniques have been largely used to
understand the intent underlying linguistic actions (spoken 0¢ written utterances), they also lay a solid foundation for
analyzing the purpose behind non-linguistic actions, such as teleoperated manipulations.

The first plan recognizers grew out of research on "scripts" [Schank and Reiger 74] for modelling stories or
conversations. These early predecessors to plan recognizers were useful only if nothing out of the ordinary occurred.
A richer formalism is necessary to infer the proper connections when an unusual or unexpected event occurs. Plan-
based models have been employed to do just that. A plan-based system attempts to construct an explanation for the

observations. Plan recognition, thus, becomes the process of searching the space of possible plans for an
explanation. Since such a search is not tractable in any but the smallest domains, simplifying assumptions must be
added to the plan recognition problem [Allen 87]. The typical assumption, called the "completeness assumption,"
has been to assume complete knowledge of all possible plans.

Several strategies have recently been employed to recognize and track a user's plan (e.g., Allen 83, Sidner 85,

Carberry 85, Kantz 87). These plan recognition strategies typically use a plan library: a description of typical plans
and actions that might occur in a particular domain. On the basis of the library and description of an action, plan
recognition algorithms produce (possibly partial) descriptions of the corresponding plan. Allen's algorithm (Allen
83) uses a heuristic search to choose a preferred plan, while others (such as Sidner's (85) or Kautz's (87)) allow the

recognition to occur incrementally. Sidner's and Kautz's plan recognition techniques operate in a "syntactic"
framework. They perform a process similar to parsing by attempting to fit observed user actions into an expected
user plan (as defined by a joint library of plans or goals). A successful parse of a user's observed actions, thus,

entails finding an exactly matching prestored plan in the plan library. This strategy works given the assumption that
the library is complete.
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There are weaknesses to this approach. First, the observed user's actions may not match any of the plans in the plan

library. Current algorithms fall in such a situation (as shown in Figure 2). Second, the parsing algorithms
currently employed are slow making them less appropriate for real-time actions.

Our own research has been concerned with extending plan recognition to non-linguistic domains. 2 We have had,

among others, two concerns relevant to space telerobots: (1) supporting real-time plan recognition, and (2) allowing
for the recognition of novel plans.

2.2 Extended Plan Recognition for Space Telerobotics

The telerobot domain does not fit the current plan recognition paradigm described above. All possible plans of the

operator or tasks the telerobot can achieve cannot be prestored ahead of time. Conditions in which tasks are
undertaken can vary greatly and thus cannot be prepared for ahead of time; unexpected contingencies can occur.
Hence user plans are often novel, created on the fly, or can have (unanticipated) errors in them. Given the hostile
environment in which telerobots are intended to work, plan recognition must occur promptly in near real time before

conditions change drastically. We discuss below a proposal for extending plan recognition so that it can function in
a helpful manner in a telerobot domain. We describe a new view of plan recognition to allow it to respond to novel
situations. While we do not discuss how to formulate plan recognition to occur in real time, we anticipate that a
formulation based on chart parsing [Ross and Lewis 87, Vilain 88] could provide us with the necessary speed and

flexibility.

2.2.1 Constructive Plan Recognition

Our proposal for constructive plan recognition is motivated by some early research in plan recognition. We describe

that work briefly in the next section.

Motivating work

Plan recognition has primarily been investigated in the past at three different levels: formal, implementational, and
psychological. Recently there have been numerous interesting theoretical results in the formal studies of plan
recognition (Cohen and Levesque 85, Kautz 87), just as there have been interesting results about grammars
independent of any particular grammar. We cannot, however, simply transfer the plan recognition algorithms
developed from the formal studies and use them as implementations without Fast considering the domain to which
they are to be applied. Instead, we propose looking further back to the early pioneering work in plan recognition
(i.e., Schmidt, Sridharan, and Goodson 78, Genesereth 79, and Allen 83). Those works typically had particular
applications in mind (e.g., Allen (83) wanted to provide helpful responses in a natural language understanding
system). They also were not governed by the completeness assumption on the plan library. The analysis by
Schmidt et al. is heavily motivated by psychological modelling and uses causality instead of (implicitly) prestored
"legal" action sequences (as in the "syntactic" approaches to plan recognition) to tie together observed actions. After
each observed action, a small number of alternative plan hypotheses are generated and used along with knowledge
about the domain to generate expectations concerning what actions to expect next. Should the expectations not be
satisfied, a revision process is employed to reformulate the current hypothesis. Allen developed a plan inference
system that also chains together actions via decompositions and effects. His algorithm incorporates a set of plan
recognition rules and a heuristic control strategy. The rules determine which inferences are possible. They detrme a
valid chain of inferences from observed actions to plausible goals, while the control strategy considers the likelihood
of these inferences in order to commit to a particular plan immediately. Allen's algorithm, as formulated, is intended

to handle only single observations. Finally, Genesereth's plan recognition strategy draws heavily on a prestored
model of the typical user to detect mistakes and misconceptions by the user. The procedure reconstructs the plan
based on underlying beliefs in the user model. It suggests partial parsings of the user's actions and uses the user
model to filter those suggestions. Thus, it too differs from the syntactic approaches by using knowledge about the
user that is outside the plan library. As in these early approaches, we propose to construct valid plans from observed
action sequences using first principles. We briefly describe our constructive view of plan recognition (CPR) in the
section that follows.

2In particular, mouse-oriented interfaces to a chemical plant design system and a naval information database.
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Constructive Recognition

In [Goodman and Litman 89], we propose a new formulation of plan recognition called "constructive plan
recognition" that can address some of the problems outlined above. We briefly describe that formulation below.

Many of the implementations of plan recognition algorithms that we mentioned earlier have never been embedded

inside a complete working application. As a result, crucial issues of robustness, reliability and inherent limitations
remain. In particular, most current algorithms make the incorrect assumption that valid and complete plan
knowledge is specified and shared by all agents, and they do not consider the fact that users often make mistakes or
get sidetracked. Our research attempts to rectify these deficiencies by building on the early more semantic-based
work in plan recognition described in the last section.

We wish to remove the assumption that the system's knowledge of the user's plan is complete. Otherwise, action
sequences that differ from those stored in the system's plan library, even if only minimally, cannot be recognized.
Dropping the completeness assumption is especially necessary in contexts where the user is often creating new

plans. If we remove this assumption, however, our plan recognition algorithm cannot be limited to matching into a
predefined set of expected plans. It must be more constructive in nature and attempt to fill in potential knowledge
gaps when presented with a novel plan. It must dynamically construct from the incomplete knowledge new ways of
performing high level actions, if such actions can be seen as purposeful. One goal of our work is, thus, to identify
the relationship purposeful so that our plan recognizer can efficiently conclude the proper inferences.

Many existing plan recognizers def'me a purposeful action sequence "syntactically" (e.g., Huff and Lesser 82, Carver
et al. (84), Sidner 85, Kautz 87). They perform a process similar to parsing by attempting to fit obsevved user
actions into an expected user plan as (implicitly) defined by a complete plan library, not unlike a language that
defines all possible sentences. CPR attempts to extend this parsing analogy by developing a "cascaded" parsing
algorithm where syntax and semantics work hand in hand (Woods 80). However, while a traditional cascaded parser
uses semantics to verify or eliminate existing syntactic choices, we are using semantics to construct additions to an

incomplete syntactic language. 3 That is, ff CPR cannot parse an observed action sequence, it attempts to determine
whether or not the sequence could be part of the plan language (i.e., is "purposeful") by applying semantic
information to piece together actions. Purposeful actions must be able to be seen as being part of an action sequence
on the way towards achieving some goal. In the case of novel sequences, however, that goal is not necessarily
known. We propose to define a metric for "purposefulness." Suppose we observe two actions: action A followed
by action B. "Purposefulness by entailment" occurs if the effects of A make the preconditions of B satisfied. If we
can construct intervening actions between A and B to connect them, then we have "purposefulness by construction."
Finally, we have "purposefulness by example" if we can contrast the partial sequence "A B" that was observed
against a known "purposeful" action sequence (i.e., finding a partial match).

Similarly to the early work mentioned in the last section, CPR can use plan generation techniques to determine
whether novel sequences of actions are potentially purposeful. For example, CPR incrementally examines (using
local backward and forward chaining) the effects and preconditions of actions in an action sequence and the
propagation of those effects to determine whether or not they fit together well. In other words, an action sequence is

(potentially) purposeful if it could have been generated by a planner from f'wst principles. 4 When effects of earlier
actions neither violate nor achieve preconditions of later actions, CPR can say nothing defiinitive about the causal
structure of the plan. Instead, the desired interactions are viewed as expectations that need to be satisfied before the

plan specification is through in order for the action sequence to remain valid. Because CPR uses bottom up
techniques to incrementally verify the coherence of action sequences, the search explosion involved in earlier bottom

up approaches to plan recognition (where search spaces were generated topropose action sequences) can be controlled.

Besides plan recognition by plan generation techniques, we are also investigating the recognition of plans by plan
adaptation. What we learn from failed plan parses from the incomplete library, along with techniques of case-based
and adaptive reasoning (e.g., Alterman 86, Broverman and Croft 87, Hammond 87, Kolodner et al. 85) can be used to
determine if novel actions and goals form reasonable plans. In other words, we attempt to use the incomplete plan
library to dynamically construct new ways of performing high-level actions. Finally, we only detect an errorful plan
in the case where our semantic plan recognition techniques fail. We can then employ relaxation techniques similar

3Tbe plan parser, thus, f'dls in knowledge gaps in our plan library.

4In the early semantic-based recognition algorithms the chaining together of actions was either controlled by
expectations once the goal was known, or if totally bottom-up, it exploded.
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to those used in natural language (Carberry 85, Goodman 86) to provide diagnostic support to repair the plan.
Figure 3 below provides an overview of our proposed constructive plan recognizer.

3 Intelligent Interfaces

We want to provide practical uses of artificial intelligence in human-machine interfaces. Our primary motivation for
enhancing the plan recognition procedure is to provide the flexibility required for building such robust interfaces. In
this section we discuss intelligent interfaces, citing an example of one that we built. That interface, CHECS
(CHemical Engineering CAD System), uses a standard plan recognizer. We explain why a constructive plan
recognizer is required to provide the full power necessary to bring about a more robust interface. We end the section
with a brief discussion about using the same paradigm for telerobotic interfaces.

3.1 Current Intelligent Interface Technology

Before discussing the CHECS interface, we discuss briefly how others have preceded our efforts to increase the
robustness of interfaces and the methodologies they employed. In particular, we mention a couple efforts. User

modelling techniques have been employed in an interface to Unix 5 as part of the Unix Consultant (Wilensky et al.
84) to provide help to stereotypical users (from novice to expert users). User models are generally "static" so that
the inferences that can be deduced are limited in comparisons to the ones plan recognition can provide. Chin (88) has
extended the Unix Consultant to take into account some pragmatic information about a user's interaction with the
system. It tracks the user's knowledge over the course of a session. This allows it, for example, to avoid repeating
things the user already knows. Fischer and Rathke (88) describe an interface for spreadsheets based on object-oriented
knowledge representation. Their enhanced interface is most useful for the developer of the system and less for the
actual user. It utilizes constraint based programming to represent knowledge about the application domain. It has a
layered architecture to make it easy to modify and extend the system. Using plan recognition instead of constraint
propagation should make it possible to bring the full power of such a system to the user as well as the application
builder since the system could infer the user's intentions and reflect them dynamically in the system.

3.2 CHECS: An Intelligent Interface for Computer Aided Design 6

3.2.1 CHECS

We performed an empirical study that involved examining a representative plan recognizer based on standard
technology and using it to add more power and flexibility to an intelligent interface. To concretely explore the
connections between interfaces and plan recognition, we designed and implemented CHECS, a graphical interface to a
process design system. Design appears to be an excellent forum for applying plan recognition. Recent research
projects in AI and design have expanded design systems from mere bookkeepers to active participants in the design
process (e.g., Brown et ai. 86). As we will see, an interactive plan-based interface can add a further layer of
sophistication to these approaches. We have chosen chemical Im)cess engineering as our design domain because the
interface is illustrative of many graphical design tools, and the domain is particularly amenable to standard planning
and plan recognition representations. For example, there is a small, well-def'med set of unit operations out of which
other operations are hierarchically and functionally composed. We also chose design to push on the robustness of
plan recognition, that is, since most designs are usually new, the design process is more than simply finding an old
design.

The architecture of CHECS (and of plan-based interfaces in general) is shown in Figure 4. Its user interface is a
graphical interface, inspired by existing graphical interfaces to chemical design simulators. As shown in Figure 5,
the interface allows the user to build up a flow diagram by introducing chemical equipment (e.g., heat exchanger),
flow (e.g., pipes connecting equipment), and parameters (e.g., heat-exchanger.input = n-butane). For example, by
clicking on one of the icons representing equipment types (in the "CHECS Object" window), the user can build up a

5UNIX is a registered trademark of AT&T Bell Laboratories.
6A more complete description of this work can be found in [Goodman and Litman 89]. We would also like to
acknowledge Kimberly Claffy for help in programming CHECS.
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design containing equipment instantiations (in the "Plant Design" window). Parameters of the particular
instantiations are then specified via menu interactions (Figure 6). 7

After each user input, CHECS calls a plan recognizer to infer the chemical reaction (or plan) underlying the design,
propagates information through the design to the appropriate points, and checks the consistency of the design step.
For example, a portion of the butane isomerization plan recognized from the current design is shown in the lower
portion of Figure 5. Currently, CHECS uses a modified implementation of Kautz's covering model of plan
recognition (Kautz 87). The algorithm is incremental since it cyclically receives inputs and infers conclusions. For

each input, the conclusions of the plan recognizer are further constrained by the conclusions drawn from previous
inputs. In CHECS we assume that a single plan explains all observations (i.e., that a user is working on only
one design at a time).

A plan is inferred using pre-existing knowledge of actions. This knowledge is expressed in the form of interleaved
frame hierarchies, defining abstraction and decomposition relationships between actions. For example, the fact that a
heating-action "is-a" change-temperature-action is an abstraction, while the specification of the steps involved in the
performance of a heating-action is a decomposition. The CHECS hierarchy contains frames representing primitive
chemical actions (e.g., beat, cool), chemical plans composed of primitive actions and/or other plans (e.g., reaction
with recycle, as in Figure 5), and a distinguished set of plans called end plans, which are not components of any
other plans. There is also _ interleaved object hierarchy, representing the equipment associated with each primitive
action (e.g., a heat exchanger can be used to implement a heating or cooling action). Finally, there is a hierarchy of
chemical substances, as well as a database of facts containing particular assertional information. In CHECS, the
goal of plan recognition is the inference of an instantiated end plan given the specified configuration.

Finally, just as plan recognition has been used to enhance various systems, CHECS recognizes and then manipulates
plans in order to provide new design interface capabilities. As will be discussed below, plan recognition is used to
add conceptual design completion, error handling, advice, and plan-dependent system responses.

3.2.2 Plan Recognition Help for CAD Interfaces

Typical graphical front-ends to design simulators provide standard graphics capabilities such as the creation of icons

to represent parts, the selection and placement of parts, and editing facilities. Everything is performed manually
including the layout. More recent systems help the designer with layout, allow parameter values to flow through the
design automatically, provide symbolic simulation, and determine design validity by contrasting the designer's
selected values against other pieces of the design. With plan recognition, we were able to implement features in
CHECS not found in current systems. These advances allow the system to reflect the context in the system's current
state, such us through menus, system advice, error detection and recovery, and bookkeeping. What we achieved in
CHECS can be seen as a step towards more intelligent cooperative design tools. It is not automatic design, but
instead keeps the user in the loop with most but not all of the control.

For example, CHECS is able to constrain icons and parameter values by considering what is legal with respect to
what the system infers that the designer is doing. Such constraints are visible in "dynamic menus" which reflect the

current context by dimming out entries that are already filled by the designer, that are inferred and propagated by the
plan recognizer, or that are illegal given the hypothesized design(s). Figure 6 illustrates the menu generated for
specification of an input to a reactor vessel. The input menu is dimmed because an entry, n-pentane, has already
been constrained as a result of inferences made by the plan recognizer from an earlier observation (e.g., by
propagating the output from one part through a pipe to the input of the reactor). The menu could have been only
partly dimmed if more than one entry was possible. Dynamic menus, thus, provide salience to their entries.

CHECS, once it infers the designer's goal, can also make inferences that provide shortcuts to the design process or
even allow design completion. For example, once CHECS determines a unique plan in the library (or common
elements in the remaining "possible" plans), it can complete all (or portions of) the user's design based upon the
inferred plans(s). Consider Figure 7 in which the user has added first a feed (a container of a particular chemical
substance) and then a still (a device used to separate a chemical from a mixture). From the plan library and from
local constraints, CHECS can predict that a heat exchanger (a device used for heating or cooling, shown as dimmed

in the figure) is needed on an input to the still. That is, stills require that their inputs are heated and, if no outputs
of parts already on the screen are heated, the system could predict that the user will have to heat the input to the still.

7These figures show snapshots of the current system. CHECS is implemented in Common Lisp; the graphical
interface runs on a Macintosh, while a textual version runs on other machines.

400



The heat exchanger is shown dimmed as a "suggestion" which the user can accept by clicking on it or reject by
_g in a different manner.
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Figure 3: Constructive plan recognition

Because CHECS recognizes the plans that underlie designs, CHECS can infer and suggest designs that do not
directly match the user's flow graph, but that instead have the same underlying functional (plan) structure. So, for
example, even if the user's design of Figure 5 had a heat exchanger connected to the output of the reactor, the plan
recognizer could still match the design conceptually against a design with a "heated reactor" (a reactor with a heating
coil built in), because a chemical subplan such as "react-and-heat" can be achieved by either flow configuration.

CHECS also provides for error handling by checking design validity. Design validity entails that the user's design
achieve a plan in the library. When it does not, the design is invalid with respect to the language of the design
library. In its strongest instantiation, the system prevents the user from making mistakes by only allowing the user
to perform actions that can lead towards one of the inferred designs.

Finally, CHECS provides advice and active bookkeeping. For example, CHECS can use conceptual matches to
suggest functionally equivalent but more optimal designs (such as the use of a heated reactor for a reactor, pipe, and
heat exchanger configuration). CHECS also does a better job at bookkeeping then previous CAD systems since it
has a higher perspective of the design then available in object-oriented design systems. By inferring the design goal,
CHECS can propagate information through the design and utilize it immediately. For example, even though we did
not implement this feature in CHECS, inferring the possible matching designs in the design library can allow the
system to do a hetter job (than the user) at the layout of the user's design.

3.2.3 Implications of CHECS

We built our first version of CHECS to study the weaknesses and strengths of an interface integrated with a plan
recognition component. Our goal was to isolate shortcomings in a class of approaches and to propose ways around
them. We discovered, as oudined in the previous section, that plan recognition can add numerous benefits to an
interface in the areas of plan completion, error detection and recovery, advice generation, and context dependent
responses. In turn, we also determined that current plan recognition systems are fundamentally limited in ways that
limit the power of the associated interface. They have little to say about the recognition of novel plans; they
typically search for known goals explained by known action sequences. However, one's planning knowledge is
incomplete, can contain errors, and differs among different users. Hence, the recent implementations of plan
recognizers make unreasonable assumptions that get in the way of a robust interface. They made some of the user
enhancements awkward in practice. The plan recognizers caused the interfaces to exert too much control over the

direction of the user in accomplishing his or her task. The more flexible we allow an interface to be (e.g., ailowing
the user to ReStart, BackUp, or Edit their commands), the more likely communication problems will occur. Current
interfaces restrict such freewill at a cost of making the interface awkward to use. We contend that our proposed
constructive plan recognizer can achieve a balance between the user and the system. Constructive plan recognition
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can also broaden the communication medium. As applications become increasingly complex, the interfaces between
them and their users take on an ever increasing burden in providing effective communication. Such interfaces can
expect mixed modalities in the communication channel. For example, a user can point with a mouse (or other
pointing device), select commands from a menu, provide typed natural language commands, or give spoken
commands.

3.3 Intelligent Interfaces for Telerobotics

Our constructive plan recognition algorithm could serve as a backbone for an intelligent interface to a telerobot. Its
strengths over standard plan recognizers have already been elucidated. In practice it would be capable of building on

any presto.red plans in. the incomplete task plan library. CPR better fits the pa_hed together nature of telerobotic
acUons. Since matchnng complete prestored plans to a particular situation won t always work in the unknowns of
space, operators must adapt their plums or learn as they go. An interface that can effectively work for an operator in
that environment, hence, must be capable of tracking varying user actions. It must detect and ignore side actions
performed by the operator that aren't related to the overall goal while still responding to contingencies that arise.

A telerobot interface could be extended using CPR to add a more cooperative layer of sophistication and to bring the
interface and telerobotics task closer together. CPR would monitor the operator's actions in an attempt to infer both
high-level and low-level goals based on the latest action in the action sequence. When a higher-level goal is inferred,
the interface can request the response planning component to complete the task. Otherwise, based on local actions,
the interface can augment the operator's actions with more precise actions.

4 Conclusion

Plan recognition is an important part of any telerobot since it can help the robot determine an astronaufs intentions

from his actions as well as working in conjunction with a planner to guide the robot in responding to contingencies.
Previous plan recognition paradigms required the system builder to build large libraries of all possible plans and
situations. Constructive plan recognition can provide the robust form of plan recognition required for telerobotics.
CPR is more realistic than previous plan recognition by recognizing that tasks are often approached in a novel way.
CPR is meant to survive without a complete and predefined plan library relieving some of the burden from the user.
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